منابع مشابه
Gradient Kähler Ricci Solitons
Some observations about the local and global generality of gradient Kähler Ricci solitons are made, including the existence of a canonically associated holomorphic volume form and vector field, the local generality of solutions with a prescribed holomorphic volume form and vector field, and the existence of Poincaré coordinates in the case that the Ricci curvature is positive and the vector fie...
متن کاملRigidity of Gradient Ricci Solitons
We define a gradient Ricci soliton to be rigid if it is a flat bundle N×ΓR k where N is Einstein. It is known that not all gradient solitons are rigid. Here we offer several natural conditions on the curvature that characterize rigid gradient solitons. Other related results on rigidity of Ricci solitons are also explained in the last section.
متن کاملOn the Completeness of Gradient Ricci Solitons
A gradient Ricci soliton is a triple (M, g, f) satisfying Rij +∇i∇jf = λgij for some real number λ. In this paper, we will show that the completeness of the metric g implies that of the vector field ∇f .
متن کاملThe Curvature of Gradient Ricci Solitons
Our goal in this paper is to obtain further information about the curvature of gradient shrinking Ricci solitons. This is important for a better understanding and ultimately for the classification of these manifolds. The classification of gradient shrinkers is known in dimensions 2 and 3, and assuming locally conformally flatness, in all dimensions n ≥ 4 (see [14, 13, 6, 15, 20, 12, 2]). Many o...
متن کاملOn the classification of gradient Ricci solitons
We show that the only shrinking gradient solitons with vanishing Weyl tensor are quotients of the standard ones Sn, S × R, and Rn. This gives a new proof of the Hamilton-Ivey-Perel’man classification of 3dimensional shrinking gradient solitons. We also show that gradient solitons with constant scalar curvature and suitably decaying Weyl tensor when noncompact are quotients of Hn, H × R, Rn, S ×...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometry & Topology
سال: 2016
ISSN: 1364-0380,1465-3060
DOI: 10.2140/gt.2016.20.389